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The way in which light, scattered by a thin layer of fluid, may be used to obtain 
quantitative information about the temperature field in the fluid is investigated. 
Expressions for the phase shift imposed by the fluid, and the intensity of the 
scattered light are derived in terms of the Fourier representation of the temperature 
field, under the assumption of small variations in the refractive index. The method 
is applied to the particular case of chaotic convection, with a view to studying the 
connection between strange attractors and turbulence. Two simple mathematical 
models of chaotic convection are studied; particular emphasis is attached to the 
statistical properties of the flow and of the scattered light field, which are calculated 
numerically. 

1. Introduction 
The study of the transition to turbulence has been given much impetus by the 

discovery of strange attractors. These sets may appear in the solution spaces of 
nonlinear dynamical systems, when the control parameters take certain values. In  
contrast to the ‘classical ’ attractors (fixed points or limit cycles), strange attractors 
have non-integer fractal dimensions. Also, orbits upon such attractors are usually 
chaotic; that is, they are aperiodic and sensitive to initial conditions. Thus two orbits 
emanating from points arbitrarily close on such an attractor diverge and eventually 
follow completely separate paths. These last two properties are also characteristic of 
turbulent flows: the idea that turbulence might be related to strange attractors was 
proposed by Ruelle & Takens (1971). 

Since the motion of a fluid is governed by partial differential equations, the 
relevance of solutions to systems of ordinary differential equations to understanding 
this motion may not be immediately obvious. However, on taking appropriate 
Galerkin expansions, the partial differential equations may be transformed into an 
infinite set of coupled ordinary differential equations governing the time-evolution 
of the expansion coefficients. Moreover, under certain conditions, the behaviour of 
the exact solution to this system is determined by the behaviour of a finite number 
of terms (Foias & Temam 1983). Conversely, i t  is well known that when insufficient 
terms are retained, the behaviour of the system may vary considerably with the order 
of truncation (cf. Curry et al. 1984). The problem of identifying appropriate 
truncations remains to be solved. Thus care must be taken in attempting to relate 
the solutions of truncated systems to real fluid flows. However, by studying 
relatively simple, severely truncated systems we might hope to identify qualitative 
features characteristic of chaotic flows which are present in higher-order, more 
realistic models. 

Remote-sensing techniques have also contributed greatly to the study of 
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turbulent flows. They allow measurements to be made without disturbing the fluid 
- an important factor when the flow is unstable. The velocity of the fluid may be 
measured by laser-Doppler anemometry . However, measurements of the temperature 
field, using light-scattering techniques, are usually only qualitative. 

The work described here concerns both the connection between strange attractors 
and turbulence, and how light-scattering techniques may be made more quantitative. 
It forms part of a project to study chaotic convection in a thin, horizontal layer of 
fluid heated from below, by comparing statistical properties of experimental results 
with those obtained from mathematical models. This paper reports on the theoretical 
work. A comparison of the results shown here with those of preliminary experiments 
carried out a t  RSRE, Malvern, by Dr J. Walker, is encouraging; the experimental 
work will be reported upon elsewhere, on completion of the programme. 

Section 2 deals with the theory of light-scattering. A uniform, parallel beam of 
light is assumed to  shine vertically through the fluid. Some simplifying approxima- 
tions are made, and expressions obtained for the intensity of light beyond the fluid, 
and the phase difference between light leaving and entering t>he fluid. Although we 
consider only the particular geometrical configuration relevant to the problem of 
Bknard convection, much of the theory is applicable to any general region of fluid 
provided it is, in a certain sense, thin, and provided variations in the refractive index 
are small. 

Section 3 contains a brief review of the theory of Bknard convection, and the modal 
expansions appropriate for the idealized configuration of an infinite layer of fluid, 
bounded in the vertical by free, perfectly conducting boundaries. 

In  994 and 5 ,  two simple models, obtained from severe truncations of the modal 
expansions of Bknard convection, are discussed : the well-known Lorenz model, and 
a model with nine variables. Although neither is expected to describe accurately 
convection in a real fluid, through their simplicity they clearly demonstrate the 
processes involved in the scattering of light by a fluid. Consideration of these models 
enables us to assess the advantages of taking measurements of the phase of the 
scattered light, as opposed to those of its intensity. In  addition, since both produce 
chaotic flows, we might hope they will show those qualitative features which are 
characteristic of chaos, and which might therefore also be present in more realistic 
models of convection in a fluid. 

We concentrate on the statistical properties of the flow : probability density 
functions (or, more correctly, local times), correlation functions and averages. 
Since chaotic systems are usually found heuristically to be statistically stationary, 
ergodic and mixing, we use time averages rather than ensemble averages, Note, 
however, that  ergodicity has been proved rigorously only for special types of systems 
(Lanford 1981). 

I n  general, statistical properties must be calculated numerically : some analytical 
relationships exist between moments and correlation functions, but the systems 
cannot be closed to give explicit results. Since the sensitivity to initial conditions 
causes a numerically integrated orbit to  diverge from the true orbit as truncation and 
discretization errors accumulate, one might question the accuracy of numerical 
results. However, Smith (1977) and Benettin et al. (1978) have found that numerical 
results for some systems are independent of truncation error and integration routine. 
Moreover, it might be argued that imperfections in the numerical integration are 
analogous to those occurring in real systems (e.g. external noise from weak 
vibrations). 
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2. Optical theory 

variations of the refractive index, n ( r ) ,  so that 
Consider a beam of light travelling through a region in which there are small 

n ( r )  = no[ l  - e n l ( r ) ] ,  (2 .1)  

where n l ( r )  = 0(1), and E 4 1 .  The path, R(s)  = ( x ( s ) ,  y ( s ) ,  z ( s ) ) ,  of a ray is governed 
by the equation d dR 

--n(R) - = V n ( R )  
ds ds 

( 2 . 2 )  

(cf. Jones 1964 p. 343), where s is the distance along the ray from some reference point 
upon it. Appropriate boundary conditions on ( 2 . 2 ) ,  which are convenient for our 
purposes, specify the position and direction of travel of the ray a t  s = 0. Also for 
convenience we choose the axes (x, y, z )  such that a t  the point s = 0, the ray travels 
in the direction of the positive z-axis. 

A useful approximation to ( 2 . 2 )  may be made by expanding 

and 

R ( s )  = Ro(s) + eR,(s) + . . . , 
n(R) = n ( R , ) + e R ; V n ( R , ) +  ..., 

as Taylor series. Then since 

Ro(s) = R(O)+sk, it may be shown that 

(2 .5)  

(2 .6)  

where k is the unit vector in the direction of the positive z-axis. Thus to a first 
approximation the ray is undeflected. Moreover, 

zl(s) = 0,  (2.7) 

and a solution of (2 .2)  which is correct to  order el may be found by replacing s by 
z .  This is the paraxial approximation, under which the path of a ray is R,(z) = (x,(z), 
y,(z), zo + z )  where 

dy,=- an 
& ( n  dz)  ay 

It is worth noting that equations (2 .8)  remain valid when the angle of incidence 
to the z-axis is non-zero, but O(e)  as E + O  as outlined in the author's thesis (Hawkins 
1984). Thus there is a margin for error, albeit very small, in the alignment of the 
beam; this may be very important in experiments. 

Since we are interested in studying BBnard convection, we consider the system 
relevant to this problem, as shown in figure 1 .  We wish to calculate the intensity of 
light in the region z > 0, and also the phase of light as it crosses the plane z = 0. 

From the paraxial approximation, a ray entering the fluid a t  the point (xo, yo, - 1)  
follows the path R(z) where 

R(z)  = ( ~ o , y o , ~ - l ) + O ( e )  ase+O, (2 .9)  

for any form of nl(r).  The phase difference between any two points on a ray is 
proportional to the optical path length, along the ray, between these points: 

(2.10) 
J o  

where k is the wavenumber of the light. 
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FIGURE 1.  Schematic diagram of the B6nard experiment. 

Therefore, on expanding the refractive index as a Taylor series about the 
leading-order solution (2.9), the phase of a ray entering the fluid a t  (xo, yo, - 1) and 
emerging a t  (xe, ye, 0), is 

1 + 0 ( t 2 )  

$(Xe>  ye, 0) = # ( S O ,  yo, - 1) + kno J [ 1 - enl(xo7 yo, S) + 0(c2)] ds. (2.11) 
0 

Thus the phase may be calculated correctly to order e by assuming the light travels 
straight through the fluid without being refracted, and i t  is consistent with this 
approximation to set (x,,ye) = (xo,yo). Moreover, there can be no focusing within 
the fluid in this approximation, and the intensity of the emerging beam is the same 
as that of the incident beam. This is equivalent to treating the fluid as a phase screen 
a t  the plane z = 0 ;  that is, to taking its sole effect to be that of impressing the phase 
shift 4 ( x o ,  yo, 0) -4(zo, yo, - 1 )  upon light as i t  crosses the plane z = 0. 

The intensity of light observed a t  a point ( x ,  y, z )  is the square of the amplitude 
of the wave function, Y, there. This may be calculated from the diffraction integral, 
accumulating contributions from all points (s + t,, y + t,, 0) on the phase screen. 
When the phase screen is paraxial, that  is when 

(2.12) 

the diffraction integral may be approximated by 

-ik exp [i(kz-wwt)] 
2nx qz, y, 2) = 

(Berry 1977), assuming unit intensity for the incident light. I n  general, it  may not 
be possible to evaluate the integral in (2.13) exactly. However, i t  may be approximated 
in the geometrical optics limit as k - t  co by using the method of stationary phase (cf. 
Bleistein & Handelsman 1975). Thus 

where 

(2.14) 
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The point (ti, ti) is the stationary point of the exponent, defined by 

(2.16) 

The value of the intensity follows immediately : 

I ( x ,  y ,  z )  = lY (x ,  y ,  z)12 - 1z2 det Q1-l as k +  00. (2.17) 

Note that (2.17) is the leading-order solution for the intensity and terms of order c 
within it must be ignored. 

Equations (2.14)-(2.17) are valid provided that det @ + 0:  the points a t  which the 
determinant vanishes are where caustics are formed and geometrical optics breaks 
down. An alternative method of evaluating the intensity is to use the geometrical 
optics result that  the intensity a t  a point is proportional to the density of rays there. 
The leading-order solution is identical to that found by the phase screen method: 
details are given by Hawkins (1984). 

The theory described above is also valid when the refraotive-index field varies 
slowly with time. Provided 

(2.18) 

(where c is the speed of light) the refractive-index field changes by a negligible 
amount in the time taken for the light to travel through the fluid, and may be treated 
as quasi-static. I n  this ease, note that if z is so large that the inequality 

(2.19) 

is violated, there is a time lag of 7 x z / c  between the phase screen and the intensity 
a t  ( x ,  y ,  z ) .  

Although we have considered a refracting region of a particular shape, it may be 
possible to apply the methods described above to  other systems. The important 
requirement, besides that of small variations in the refractive index, is that to leading 
order there is no change of intensity within the fluid. This is true only when 
xl(z) = 0(1) and y l ( z )  = O(1) at all levels z within the fluid. Now from the paraxial 
approximation, given that dxl/dzlZo = 0, 

(2.20) 

and similarly for yl(z). Thus the phase screen approximation may not be valid when 
the integral in (2.20) becomes large. In  particular, i t  may not be valid for thick layers 
of fluid. 

3. The convection problem 
We consider convection of a Boussinesq fluid confined to the region - d  d z* < 0, 

- co < x * ,  y* < 00 (cf. Drazin & Reid 1982), where the asterisk subscript denotes a 
dimensional quantity and where the positive z-axis is taken vertically upwards. We 
denote the kinematic viscosity of the fluid by 11, the thermal conductivity by K ,  the 
coefficient of cubical expansion by a, and the density by p, and take the unit of length 
to be d ,  that of time d 2 / K ,  of velocity K / d ,  of temperature ~ v / a g d ~  and of pressure 
p-d K 2 / d 2  where ppd is the density a t  a reference temperature 7Ld. 
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state are 
I n  dimensionless form the velocity, temperature and pressure fields in the steady 

U =  0,  T =  T-d-(T-d-T,)(z+l), (3 . la ,  h )  

( 3 . 1 ~ )  
[iapd(z + 1 )2  + ( z  + I)]  gd3 

K2 
and P = ed- 

where T-, and T, are the temperatures of the lower and upper boundaries respectively. 
The perturbations u = (u,  v, w ) ,  B and p about the steady state satisfy the equations 

W-u = 0, -+u.Wu = -Vp+PrBk+PrV2u,  (3.2a, b) 

( 3 . 2 ~ )  and 

without approximation, where R = a(T-, - T,) g d 3 / ~ v  (the Rayleigh number) and 
Pr = V / K  (the Prandtl number). 

Since we do not expect qualitative features of the chaotic regime to be greatly 
affected by the boundary conditions, we choose the simplest case of free, constant 
temperature boundaries and impose 

au 
at 

ae -+uw = R ~ , + v ~ o ,  
at 

(3.3) 

The linear problem then has a simple analytic solution; the eigenfunctions are 
sinusoidal and provide a convenient basis for series expansions of solutions to the full 
nonlinear problem. 

Following McLaughlin & Martin (1975), we impose a periodicity in the horizontal 
and take the Fourier representations 

W 

u(x, y , z ; t )  = i C uzmn(t)  exp[i(a,,Zz+ay,my+7cnz)], (3.4a) 
lmn--m 

W 

B(x,y,z;t) = i Z O l m n ( t )  exp[i(a,lx+aymy+7cnz)], (3.4b) 

where the coefficients ulmn(t) = (ulmn(t), ulmn(t) ,  ullmn(t)) and B z m n ( t )  may vary with 
time. When these coefficients are constrained to  take real values, the convection 
pattern is stationary. However when they are allowed to take complex values, the 
pattern may drift in the horizontal plane. Note that the imposition of periodicity is 
in effect a truncation procedure, replacing full Fourier transforms in the horizontal 
by Fourier series. 

The boundary conditions (3.3) are satisfied when the Fourier coefficients obey the 
constraints 

lmn=-m 

- 
U1m-n - Ulmn? u1m-n = Ulmn, U’1m-n = -u’lmn 0lmn-n = -0imn.  (3.5) 

Also, the velocity and temperature fields must take real values, so 

where an asterisk superscript denotes a complex conjugate. Equations (3.5) and (3.6) 
may be used to reduce the range of the indices 1, m, n to  0 < I, n < CO, - 00 < m < 03. 

I n  addition, they imply that certain modes vanish : 



Scattering of light by cr chaotically convecting $uid 

Substitution of ( 3 . 4 ~ )  into the continuity equation ( 3 . 2 ~ )  gives 

161 

nnuilmn = -a5 lulmn - u Y ~ r r ~ v l m n ,  (3.8) 

whence uloo = ziomo = wOon = 0 (1, nb, n =I= 0 ) .  (3.9) 

Substitution into the remainder of the perturbation equations (3.2) (cf. Hawkins 
1984) yields the coupled set of nonlinear, ordinary differential equations : 

ax l x n  
ulmn = -PrK;mnulmn-Pr- elmn 

h;2m n 

( 3 . 1 0 ~ )  

a nLn?L 
G l m n  = - Pr K;mn tilmn - Pr e l m n  

n 

(3.10b) 

x e l - p ,  m-q,  n - r }  * o), ( 3 . 1 0 ~ )  

where the summation is over - co < p ,  y, r < CQ and where 

Kimn = a: l2 + a; ,rn2 + 7c2n2, (3.11 u,) 

(3.11b) 

- 2ax uy(lr- n p  + npSr o )  (,mr- n q - n ( m -  y) 6, n )  ( 3 . 1 1 ~ )  
B l m n p q r  - K;mn r(,n - r )  

(3.11d) 

Equations (3.10) and (3.11) completely determine the velocity and temperature 
fields corresponding to  a given initial state a t  t = 0, except for the contributions from 
the modes uooo and 'voo0. Thesc may be shown to be constant in time and purely 
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imaginary (Hawkins 1984). They therefore describe a steady, uniform basic flow 
which we choose to  set to zero. 

A linear analysis of (3.10) shows that the mode ( I ,  m, n)  becomes unstable a t  a 
Rayleigh number 

(3.12) 

in agreement with the standard analysis. The minimum value of ?n47c4 is achieved 
when K;mo = an2+?. Thus the most unstable mode also has n = 1 .  Note that although 
the horizontal wavenumber of the most unstable mode is determined, the indices 1 
and m, and the ratio uy :a ,  are not. 

The flow in the phase space (ulmn, ulmn, elmn) has negative divergence: 

z -  a u m n  +-+- aljlmn a'lmn = - (2pr+ 1)  z pmn. < 0, (3.13) 

where the summation is over all allowed values of ( I ,  m, n).  Therefore the flow is 
contracting: when finite series are used, the set of attractors occupy zero volume in 
the phase space. 

Finally, (3.10) and (3.11) are invariant under change of sign of all coefficients for 
which 1 is odd, of those for which m is odd, or of those for which n is odd. Thus the 
set of attractors in the phase space has a certain symmetry. I n  particular, when only 
a single attractor exists, the averages of products involving an odd number of such 
coefficients must be zero. This provides a useful check on the accuracy of numerical 
calculations of the statistical properties. 

Expressions for the phase shift induced by the fluid, and the scattered intensity 
may now be found. It is consistent with the Boussinesq approximation of a linear 
variation of density with temperature, to assume a linear variation of refractive 
index also (cf. Hawkins 1984). Thus we take 

n(T) = no[l-y(T-T-d)J. (3.14) 

K-l, and both y and yR are small when R 

lmn aulmn avlmn aetrnn lmn 

For water, q* = yR/(T*-d- T,o) x 1 x 
is large but (T*-d - TQ not too large. 

On substituting (3.1b) and (3.4b) into (3.14) and using (T&-q)  = R, we find 

n(x,y,z;t) = n , [ l + q R ( ~ +  l ) -yO(x ,y ,~ ; t ) ] .  (3.15) 

Thus, from (2.11), the phase shift imposed by the fluid is 

xexp[i(u,lxo+u,myo)], (3.16) 

where the summation is over -a < Z,m,n < CO. Also, from (2.15)-(2.17), the 
intensity of light scattered by the fluid, relative to the incident intensity, is 

(3.17) 
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where 
ia, 1 6; = 4n,yz c O l ,  m ,  z n + l ( t )  exp [;(a, l ( x  + 6;) + ay m ( ~  + (:))I. (3.18) 

Emn ( 2 n + 1 ) ~  
and 

ia in 
i$ = 4n0 v (2n:1)x01,m,zn+1(t) ex~[i(axl(x+6PL-)+aym(~+~:))I~ (3.19) 

Zmn 

and where the summations are over - 03 < 1 ,  m, n , p ,  q,  r < 03. Only modes OLmn where 
n is odd contribute to the phase screen and the intensity : those with ?i even average 
to zero in the vertical. 

4. The Lorenz model 
The well-known Lorenz model is obtained by applying the truncation 111 < 1,  

m = 0, Ill+lnl < 2 (or equivalently m = 0, 1 2 +  n2 d 4) to the series. It is the most 
severe truncation to retain nonlinear terms, and involves just three coefficients : X, 
Y and 2 in the notation of Lorenz (1963). 

The velocity field u(x, z ;  t )  = (u(x, z ;  t ) ,  0, w(x, z ;  t ) )  takes the form 

u(x ,  z ;  t )  = -4ulO1(t) sin (a,%) cos (m), 

~ ( x ,  z ;  t )  = 4(a,/n) ulol( t )  cos (a ,x)  sin (m), 

and the temperature perturbations 

@(x, z ;  t )  = -48,,,(t) cos ( a , ~ )  sin (xz) -28,,z(t) sin (2x2). (4.11 

This forms a stationary convection pattern of two-dimensional roll cells. 
A ray of light with normal incidence travels through the fluid along the path 

(4.2) 
4 P X  x(z  ; t )  = x, + O l o l ( t )  sin (a ,  zo) [ x ( z  + 1 )  + sin (xz)] + O(  $), 

and the phase difference between light leaving and entering the fluid is 

x 

@(z, ; t )  = k(?L,-l+;n,yR)-- x 7 oIo1(t) cos ( a ,  x,) + o(y2). (4.3) 

An exact expression may be found for the intensity (Hawkins 1984) : 

where 

and 

OD 

I ( x , z ; t )  = 1 + 2  x ( c r ( l ) ) l  cos( la~,X)Jz(w),  
1=1 

(4.5) 

In the pre-caustic region 

the geometrical optics approximation of the intensity field is 
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where 

It is convenient to introduce the variables 

and 

R r = -  4x2 (a: + x2)3 
4' 

b =  R, = 
(a: + n2) ' a: ' 

I - 2 v'2a, ulol 
(a: + n2) t' = (ai+n2) t ,  S = 

I'= 242a; 8,0, Z =  2% 6002 
( 4 + 7 C 2 ) 3  ' ( a : + ~ ~ ) ~ '  

(4.9) 

(4.10) 

(4.11) 

Then the time evolution of X, Y and Z is governed by the coupled system of 
equations 

A$ = - P r S + P r  Y, Y =  r X -  Y-ZS, 2 = - b Z + S Y ,  (4.12) 

where a 'dot ' denotes differentiation with respect to the dimensionless time t'. 
Many basic properties of these equations are now well-known, and may be found 

in the paper by Lorenz (1963), and the book by Sparrow (1982). Some averages and 
correlation functions in the chaotic regime have also been calculated by Liicke (1976), 
Knobloch (1978), and Grossmann & Sonneborn-Schmick (1982). We present further 
numerical results of statistical properties (in particular probability density functions 
and autocorrelations of S2, Y2 and Z 2 ) ,  and discuss the statistical properties of the 
scattered light field. First, however, we outline the basic properties of the equations 
which are relevant to the discussion of their statistical properties. 

Equations (4.12) are invariant under the transformation (S, Y, 2)  + ( -  5, - Y, 2). 
All solutions to the equations may be shown to  be bounded, and the flow in the phase 
space (S, Y ,  2) is contracting. There are three fixed points of (4.13). The first, at the 
origin, exists for all values of r ;  it is stable when r < 1 and unstable when r > 1. The 
remaining two, X = 1'= (b ( r -  l));, Z = ( r -  1)  exist only when r 3 1; they are 
stable when r < rc = P r ( P r + b + 3 ) / ( P r - b - l )  and unstable otherwise. When r 
exceeds the critical value r,, a wide variety of behaviour is observed depending upon 
the values of all three parameters. The orbits may be periodic, quasi-periodic or 
chaotic. We choose to  study chaotic solutions. 

We have used two sets of parameters, (Pr, b ,  r )  = (10, !j, 28) and ( P r ,  b ,  r )  = 
(10, i, 175), both of which generate chaotic solutions. Typical time series are shown 
in figure 2 .  

We first note the apparent symmetry, about the origin, in the time series of X and 
Y. We therefore expect averages of the form ( X 1 Y m Z n ) ,  where 1, m and n are 
integers, to vanish when ( l + m )  is odd. The series are dominated by a spiralling 
motion about the non-zero fixed points, together with a switching between the 
points. Although there is no well-defined period for these characteristics, we may 
associate a typical timescale with each. At r = 28,  a typical time for one cycle about 
a fixed point is 7, x 0.75, whilst a typical time for switching between the fixed points 
is 7, 4. At r = 175, the switching occurs much more rapidly, presumably because 
the fixed points are more strongly repelling, and 7, z 27,. The overall motion is 
faster, with 7, z 0.25, and the amplitudes are greater (note the different scales). The 
spectra are not shown, but all have broadband noise typical of chaos, with very weak 
'peaks ' a t  the frequencies corresponding to the timescales 7,. 

On the grounds of numerical evidence, the Lorenz attractor is thought to be 
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FIGURE 2. Time series for the Lorenz model with (a) r = 28, Pr = 10 and b = !j; ( b )  r = 175, 
Pr = 10 and b = %. 

ergodic and statistically stationary (Knobloch 1978). We assume this to be so and 
use time averages, which we denote by angular brackets : 

(4.13) 

where stationarity ensures the result is independent of to. The average of the 
time-derivative of a bounded function vanishes : 

T+m 

Since the Lorenz attractor is bounded, this yields relationships between averages : 

n(Z+ l , m +  1,n-  l)-m(Z+ 1 , m - l , n +  1)  = (PrZ+m+bn) (Z,m,n) 

- Pr Z( 1 - 1, m + 1 ,  n)  - rm(Z + 1 ,  m - 1 ,  n),  (4.15) 

where (I, m, n) = (X1 YmZn)  (Hawkins 1984). Similar relationships may be found 
between correlation functions (Hawkins 1984). 

We turn now to the numerical results. Equations (4.12) were integrated using a 
Runge-Kutta-Merson method, with a tolerance level of The points 
( X ( t ) ,  Y ( t ) , Z ( t ) )  were calculated for 0 < t < 4000, at intervals of 0.125 at r = 28 and 
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FIGURE 3. Probability density functions of X, Y and 2 of the Lorenz model with r = 28, 
Pr = 10 and b = f. 

0.01 a t  r = 175. Points for which t < 500 were discarded in order to  eliminate initial 
transients. 

The probability density functions are shown in figures 3 and 4:  they were 
computed by counting the number of points to  fall within bins of size 0.25 for r = 28, 
and 0.2 for r = 175. A bin giving a value of p = 0.01 contains 80 samples at r = 28, 
and 8000 a t  r = 175. The graphs are qualitatively similar, although there are more 
peaks, and these are sharper, at the higher value of r .  The scatter in the diagrams 
is caused by the series having many turning points, very finely spaced in X (or Y 
or Z as appropriate), which produce peaks or (integrable) singularities in the 
probability density functions. 

The autocorrelation functions of X, I.' and 2, and of X2, Y2 and Z2 are shown in 
figures 5 and 6. Those of X, Y and 2 agree qualitatively with those computed by 
Liicke (1976) and Grossmann & Sonneborn-Schmick (1982). Those of S and I' are 
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FIGURE 4. Probability density functions of 9, I' and 2 of the Lorenz model with r = 175, 
Pr = 10 and b = '$. 

very similar: both have a rapid decay, followed by oscillations which are more 
pronounced a t  the higher value of r .  The timescale of the initial rapid decay is of order 
0.5 a t  r = 28 and 0.1 a t  r = 175. The timescale, r,, characterizing one cycle around 
a fixed point appears to be associated with the first peak of the correlation function, 
or possibly the zero that occurs just before it (Grossmann & Sonneborn-Schmick 
1982). The autocorrelation functions of Z show a much slower decay, with regular 
oscillations. We may distinguish a timescale of 0.8 a t  r = 28, corresponding to r,, and 
of both r ,  FZ 0.25 and r ,  FZ 0.55 a t  r = 175. 

The autocorrelations of X2, Y2 and Z 2  are similar to one another, all showing the 
regular oscillations seen in that of 2 (although a t  r = 175, the autocorrelation 
function of Y2 has much weaker oscillations than that of X2 or of Z2). The difference 
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between the autocorrelation functions of X and X 2  may easily be understood. The 
switching between the two fixed points destroys the correlation in X, but is 
ineffective in that of X2 since the two fixed points are then indistinguishable. 

The resemblance between the autocorrelation functions of X 2  and of Z is striking. 
Integral relationships between the two may be found : 

(x: X:) = 4Pr2(Z, 2,) - 4Pr2(Pr-b) [(Z, Z,,,) + (2, Z7-8)] e-2pr8 ds Jo* 
and 

4Pr2(Z,Z,) = (X:X: )+  (2Pr-b) [ (X~X,2 , , )+(X:X~- , ) ]  e-bsds Jorn 

(Hawkins 1984). However, we have been unable to find an explicit relationship. 
We turn now to discuss the scattered light field, and its statistical properties. Since 

the phase shift is directly proportional to Y ( t )  (through Olo1(t), equations (4.3) and 
(4.11)), its statistical properties are identical to those of Y when scaled by the 
appropriate factor. 

The intensity is more complicated. We confine our attention to the pre-caustic 
region, and use (4.7) to estimate its size. Taking 1 Y(  < 30, no = 1.333 and 
7 = 6.06 x low9 for water, we find that caustics are never formed in the region 
z < 1400, in dimensionless units. Thus for 36.4 K temperature difference across 1 cm 
of water, z* < 14 m. Obviously the phase screens produced by real experiments will 
be more complicated than the simple sinusoid produced by the Lorenz model. Since 
the maximum value of z scales inversely with the curvature of the screen, the 
presence of smaller scales will bring the caustics closer to the fluid. However, the 
result does indicate that we should expect the pre-caustic region to extend sufficiently 
far from the fluid for measurements to be made within it. We may define a 
characteristic length of the pre-caustic region, from (4.7) and (4.11), as 
z, = n/(2z/2noyR,a~) .  This is the closest to the screen that caustics may be formed 
when Y( t )  = 1 .  Henceforth we will use the renormalized value of z ,  z' = z / z , .  

In  addition to the periodicity of wavelength 2x/a, in the horizontal, the intensity 
field obeys the symmetries 

I -+z,z '; t  = I  --x,z';t , (.", 1 (n", 1 
and 

(4.18) 

(4.19) 

Therefore we restrict our attention to the domain x E [0, x /2a , ] .  
The variation of intensity with z'Y is shown in figure 7 ,  for different values of x. 

The mapping may be two to one a t  all values of x when z'Y is allowed to take all 
values in the range [ - 1,1] .  However, within the pre-caustic region, the range of 
possible values is less than this; thus a t  points near x = nx/u, the mapping becomes 
one to one. The boundary of this region is shown in figure 8 (see Hawkins (1984) €or 
detailed calculations). I ts  shape is important in the application of theory to 
experiment, since we would ideally like to take measurements in a region where the 
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FIGURE 7 .  Plot of I versus z’Y. 
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0 tr L fx 2r 

O X X  

FIGURE 8. The single-valued region (unshaded) of the mapping z’Y+I. 

intensity is a single-valued function of the temperature field. I n  a real fluid, the 
contributions of additional modes to the phase screen must complicate the shape of 
the region, and any movement of the convection pattern may cause i t  to distort with 
time. Therefore, there may be no points a t  which the intensity field has the desired 
properties. Moreover, if such points did, by chance, exist, it may prove impossible 
to identify them in practice. 

The first six normalized intensity moments, ( I m ) / ( I ) m ,  were calculated for each 
of z’ = 0.01 and 0.025. It was found that a t  the lower value there was insufficient 
contrast to distinguish them from the values 

(4.20) 

which hold regardless of the form of I ,  provided its variance is small (cf. Hawkins 
1984). At the higher value, there is a significant deviation from this relationship, as 
shown in figure 9. However, for this value of 2’ we are closer to the caustic region 
than to the fluid, and the intensity is a single-valued function of intensity over only 
a small horizontal extent. 



172 

2.0 3 

1.8- 

1.6- 
(Irn) 
(r>m 

1.4- 

- 
1.2- 

8. C. Ryrie 

. m = 5  

. m = 4  

. m = 3  . .  
* .  . .  *.:. . 

, I :  i : * - 
I 1 I I I I I I I l 

m = 6  

(12) 
(02 

FIQURE 9. Normalized moments ( I m ) / ( I ) m ,  for m = 3 ,4 ,5  and 6, versus ( P ) / ( I ) 2  for r = 28, 
Pr = 10, b = # and z‘ = 0.025. 

-. 

Thus we have a dilemma between choosing z’ to be large enough that the intensity 
moments differ from the universal relationship (4.20), but not too close to the caustic 
region. 

The importance of remaining within the single-valued region may be further 
illustrated by studying the probability density functions of the intensity for different 
horizontal positions. Those for z’ = 0.025 are shown in figure 10. Assuming 
I Y(t)l < 30, then the intensity is a single-valued function of Y( t )  when 0 < ax z < 0.23. 
Within this single-valued region, the probability density function of the intensity, 

is similar to that of Y ,  but increasingly stretched and flattened as I increases. Outside 
this region, however, two distinct values of Y contribute to p,(I)  at the higher values 
of I .  Thus the distribution of the intensity there is produced not only by the 
stretching described above, but also a folding a t  the upper end, and many qualitative 
features of p,.( Y )  are destroyed. 

The normalized correlation functions of the intensity 

(I@, z; t )  I(ax 2; t f 7 ) )  - ( I ) z  
(I2) - (02 

C(7; a,z) = (4.22) 

are shown in figure 11,  for z’ = 0.025. Qualitatively similar results were found at 
z’ = 0.01. When a,x < 0.8, there is an initial rapid decay followed by very weak 
oscillations; R(7;  a,x) is very similar to the autocorrelation function of Y shown in 
figure 5.  When a, x 3 1.2, however, R(7 ; a, x) is highly oscillatory and qualitatively 
similar to the autocorrelation function of Y2 shown in figure 5 .  This may be 
understood by noting from figure 7 that when a,x 2 1.2 the intensity is almost 
symmetric with respect to Y .  Thus taking a,x near the value .$ destroys the 
distinction between positive and negative values of Y in the same way as squaring 
Y.  

Even for the simple Lorenz model, then, the behaviour of the statistical properties 
of the intensity is complex, and varies with position. The phase shift, however, is 
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FIQURE 10. Probability density functions of the intensity for r = 28, Pr = 10, b = C and z' = 0.025 
at (a)  u,z = 0; (b)u,z = 0.2; (c) u,z = 0.4; (d )  u,z = 0.8; ( e )  u,z = 1.2; ( f )  u,z = 1.6. 

directly proportional to the average of the temperature field taken vertically through 
the fluid. Thus its statistical properties are more closely related to those of the 
temperature field, and provide a more sensitive indication of the latter. Also, the 
phase is easier to calculate from mathematical models, and avoids the problem in 
experiments of distinguishing between the pre-caustic and caustic regions. We 
suggest, then, that it is the more useful quantity to measure, and will henceforth 
confine our attention to it rather than the intensity. 



174 8. C. Ryrie 

h 

N, 
._ 
l- v 
Q 

h 
0 

c z 



Scattering of light by a chaotically convecting jluid 175 

5. A higher-order model 
A higher-order model, obtained by adopting the truncation 111 < 2 ,  m = 0, 

111 + In1 < 3 and requiring all coefficients to  be real, has also been investigated. This 
model involves nine coefficients (ulol, ulO2, uZo1, Oool, 8,,,, 8,,,, 8101, O,,,, OzOl). 

For convenience, we make the transformations 

and define 
R 

, r = - .  
n2 (a: + 

R, 
b =  R, = 

(a: + n2) ' a: 
(5.2) 

Note the slightly different scaling of b and of the Fourier coefficients from that used 
in the Lorenz model. Then the equations governing the time-evolution of the 
coefficients of the nine-mode system are: 

klol = - Pr ulol -Pr Ole, + 3(i- b )  ulO2 uZo1. 

2Pr 6(1-b) 
klo2=-Pr(l+3b)ulo2---- (1  + 3b) ' 1 0 2 - ( l u 3 h ) 0 1  uzo l '  

'001 = - b'OOI+ 5(2%01 @lo2 + %lo2 '101)~ 

'ooz = -4b~002-%~101810, +2~zo1 'zol)? 

e 101 =-' 101 - rUIOl + 8 3 u 1 0 2  '003 + 4u101 '002 + 6u201 '102 + 3u102 ' 2 0 1  -u102 'OOl)? 

0102 = - (1  + 3b) 8102 -iru102 + i ( 3 ~ 1 0 1 ' 0 0 3  - 3~1010201- ~lol~ool-3~2o1 01oA3 

0zoi = - (4- 3b) '201 - 2ru201+ i ( 6 ~ i o i  0102 + 8 ~ 2 0 1 0 0 0 2  -3~102 0101). 

'003 = -9b'oo3- (2uioi O i o z + u i o z  'ioi)? 

and 

(5.3) 

We have identified four fixed points, in addition to the origin : the pair with non-zero 
coefficients 

8,,,= -ulol = +3[ib(r- I)];, eooz = i ( r -  1 )  ( r  2 I ) ,  (5.4) 

and the pair with non-zero coefficients 

02,, = -i(4-3b)2u201 = +$.3(4-3b) [ib(r-34-3b)3)]:, 

0o02 =iLr-f(4-3b)3] ( r  >, +(4-3b)3), (5.5) 

The origin is linearly stable when r < min(l,i(4-3b)3, (1 +3b)3). Note that r is 
defined such that the modes (1,0,1) are assumed to be the most stable. The apparent 
paradox of instability at r < 1 when b > i(4-44) arises because the wavenumber a, 
is then such that the modes (2 ,0 ,1)  are the most unstable. On redefining r' = R/Rh, 
where the critical Rayleigh number is now RL = (4~;+n~)~/4a: ,  the criterion for 
stability of the system, r' < 1 is recovered. 

We have investigated numerically the stability of the four non-trivial fixed points 
for Pr = 10 and b = i. The results are consistent with the pair (5.4) being stable when 
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r < rc = Pr(Pr+4b+3)/(Pr-4b-l), as in the Lorenz model; the pair (5 .5)  are 
stable when r < 9.9. 

The behaviour of the system over the interval 25 < r < 35 has been investigated 
numerically. Unlike the Lorenz system, which behaves chaotically throughout this 
interval, we find the nine-mode system has a quasi-periodic solution at r = 26.4, and 
a periodic solution at r = 35, with chaos occurring only over the narrow range 
25 < r < 26.3. Some spectra of the mode u,,,(t) are shown in figure 12. 

We have investigated the statistical properties of the system for the parameter 
values r = 26, Pr = 10 and b = 5. The system was integrated numerically over 20000 
time units, with values of all nine coefficients taken a t  intervals of 0.05 time units 
and stored in binary format. The integration took 13 hours of CPU time on an ICL 
2980, and the orbit occupied 21 Megabytes of storage space. 

A typical portion of the time series of each coefficient is shown in figure 13. There 
appears to be an alternation between motion near the ‘Lorenz attractor ’, and motion 
near an unstable limit cycle. Although the six extra modes introduced in this model 
all have much smaller amplitudes than the three ‘Lorenz modes’, they have 
significantly altered the behaviour of the latter. 

The statistical properties of this system have proved more difficult to find than 
those of the Lorenz system. Convergence of the statistical properties of the ‘Lorenz 
modes’ ulO1, el,, and 6,,, was satisfactory, but convergence of these properties of the 
remaining six modes was weak. This result is disturbing. In  real time, the length of 
the series is nearly eleven days: to maintain steady external conditions in any 
experiment over such a time would prove extremely difficult. However, since 
satisfactory convergence was observed at much shorter times in the Lorenz system 
we might hope the nine-mode system is atypical in some way. It was not thought 
to be appropriate to generate even longer time series of this model; the weak 
convergence should be borne in mind in the following discussion of the results. 

The probability density functions are shown in figure 14. The most noticeable 
difference between those of the modes uIo1, 8,,, and 8,,, obtained from this system 
and those obtained from the Lorenz system, is the pronounced dip near the origin. 
Other qualitative features such as the side peaks, the scatter caused by the extrema 
of the orbit, and the symmetry about the origin, are preserved. 

The autocorrelation functions of the modes are shown in figure 15. We may 
distinguish a timescale 7 x 0.7 for the rapid oscillations, one of T x 8 for the slower 
oscillations of the amplitude, and one of 7 x 12 for the slow decay in those of ulol 
and 8,,,. The first two timescales correspond respectively to those of the rapid 
fluctuations and of the change in amplitude in the time series. The origin of the longer 
timescale is not clear. Corresponding velocity and temperature modes have 
qualitatively similar autocorrelation functions in the same way as do X and Y in the 
Lorenz system. The apparent residual correlation in the autocorrelation functions of 
ulO2, uzol, 8,,, and 8,,, may be due to lack of convergence, but might also be a real 
effect and should not be dismissed. 

The autocorrelation functions of the squares of the modes are shown in figure 16. 
In  analogy to the behaviour of the Lorenz system, the autocorrelation functions of 
u:,,, Ofol and @to, are all similar to that of 8,,,. The convergence of the autocorrelation 
functions of the squares of the remaining six modes was better than the convergence 
of the autocorrelation functions of the modes themselves. Also, all manifestly decay 
towards zero. This suggests that the regions in which these six modes become 
vanishingly small may be causing the problems with convergence : their contribution 
becomes negligible when the square is taken. 
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FIGURE 17. Time series of the phase 4' at different horizontal positions. 
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The phase shift produced by a hypothetical fluid obeying this model is 

where 
#'(x; t )  = ~ , , , ( t )  +pOo3(t) + 28,,,(t) cos (a, r) + 28,,,(t) cos (2a, 2). 15-71 

Typical time series of #'(z; t ) ,  a t  different values of z, are shown in figure 17. The 
coefficient B l o l ( t )  dominates except near the points a,% = ( n + $ ) n ,  and hence the 
series are nearly symmetric about these points. It is interesting that such an abrupt 
change of behaviour is found over the small regions near to these points. 

The probability density functions, autocorrelation functions and autocorrelation 
functions of the square, of the phase are shown in figures 18 and 19. Again, the 
dominance of the coefficient BlOl is apparent. All these properties were found to be 
symmetric about a,x = in. This symmetry is not inconsistent with the sign of B,,, 
being independent of the signs of the other three. 

6.  Discussion 
The two preceding sections have shown some interesting results and highlighted 

some important problems. The need to truncate carefully is well known; our results 
have shown how the behaviour of the dominant modes may be significantly altered 
by the presence of extra modes with only very small amplitude. Much higher-order 
truncations are needed to give reliable quantitative statistical properties of convection 
in a real fluid. Three-dimensional effects, and movement of the convection pattern 
must be represented. However, we might expect some qualitative features to be 
similar to those observed for these two simple models. 

The problems highlighted by this work mainly concern convergence of the 
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statistical properties. Series of a t  least several hours duration in real time are likely 
to be needed, making i t  difficult to hold the external conditions steady throughout 
the course of the experiment. Moreover, there is no a priori method of estimating 
more closely the length of series needed to give statistical convergence. To use trial 
and error is inconvenient, and may be costly. Time series produced numerically may 
easily be extended, provided the final point is stored in a sufficiently accurate form. 
Those obtained experimentally may not, and the entire experiment must be repeated 
if convergence is found to be unsatisfactory. It may be useful to calculate running 
averages as the data are collected, in order to  test the convergence as the experiment 
progresses. 

Another problem is that of distinguishing long-lived chaotic transients, which may 
occur prior to regular motion, from true chaos. They can occur in both numerical 
and experimental work: Grebogi, Ott & Yorke (1983) discuss this with respect to 
theoretical work, and Croquette, Mory & Schosseler (1983) report experimental 
observations of the phenomenon. In principle, i t  may be possible to identify 
transients which gradually decay towards regular motion as such, but those which 
end abruptly might not be recognized before the final state is reached. This problem 
is aggravated by the length of series needed. It is impossible to inspect the complete 
series graphically, and difficult to ensure that any parts which are inspected, though 
randomly chosen, are typical. Thus careful processing of the data is required to detect 
any abnormal events. The development of the probability density functions with the 
length of the series may prove useful for this. 

Some preliminary experimental results have been processed, and are discussed 
briefly by Hawkins (1984). The probability density function of the phase shift shows 
some evidence of side peaks, similar to those in figures 3, 4 and 14, but the 
autocorrelation functions of the phase and of its square show disappointingly little 
structure. However, these data are known to contain significant errors, and more 
accurate results must be obtained before any conclusions can be drawn. Work to 
improve the accuracy of the experimental data is in progress, and the results will be 
reported elsewhere. 

In  conclusion, we have shown that light-scattering techniques may provide 
quantitative information about the temperature field of a convecting fluid, and that 
measurements of the phase are more useful than those of the intensity. We have 
calculated statistical properties of two simple models operating in the chaotic regime. 
The numerical work requires significant amounts of computer resources, and the 
experimental work requires great care. Nevertheless, the work described here appears 
to provide a useful approach to investigating the connection between strange 
attractors and turbulence, as well as providing a non-invasive technique of measuring 
turbulence. 
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